
 ACNAUX Functions
Acnet utility support

Mar 6, 1992

Introduction
The Acnet standard for task–task communications is widely used in accel

erator control systems at Fermilab. The Acnet task called ACNAUX is designed to
sup port a set of utility functions which can aid diagnosis of Acnet network
nodes in a standard way, as it is independent of the cpu and operating system
used by each node. Each node supports the Acnet header standard; through
ACNAUX each node supports some common diagnostic utility functions. This
note des cribes the support for ACNAUX in the Local Station nodes. The official
document of the standard is described elsewhere by Glenn Johnson.

Each function is specified by the lo byte of the first (or only) word following the
Acnet header of the request message. In some cases the hi byte of this word may
be used as a sub-function code. All functions are one-shot requests.

ACNAUX implementation
In the local station, ACNAUX is implemented by a local application called

AAUX. It uses the generic protocol support available via OpenPro to receive
notification about network messages directed to it. This same support is also
used by FTPMAN, GATE, and HUMBUG. It permits more rapid response than
would be achieved using 15 Hz polling of the message queue. Two of the
available parameter words are used to pass a ptr to the message reference block
that itself includes a ptr to the received request message. The AcReq Task calls
the local application when it receives a message destined for the local application
whose network task name is found in the protocol table, filled by OpenPro calls.

NOOP function 0
This serves as a “ping” facility. It determines if a node will respond to an

Acnet header request message. A status-only reply is returned. A Vax program
called ANPING can be run from a terminal to exercise this function. It includes
the time for the response in 10 msec resolution. A local station which is not busy
can return such a response in 4 msec, which is near the limit of the token ring
chipset that interfaces to the token ring network.

GTTASK function 4
Returns a list of the currently-connected network task names, followed by a

byte array of the associated task-id’s. The AAUX local application examines the
NETCT table contents to find this info. For each entry whose queue id is nonzero,
the task name and id is recorded. Because the format is specified in Vax normal
byte order, it is necessary to swap bytes for all words in the reply.

ACNAUX Functions Mar 6, 1992 page 2

The byte order of task names used in the local stations was designed to conform
to the notion that a task name can be a 4-byte character array. But in the acnet
system, many task names are in 6-character RAD–50 format, which also takes 4
bytes (two 3-character words). (Recall for the following argument that the token
ring hardware interface on the Vax swaps every byte, in order to make it such
that 2-byte integer words transfer between Vax and token ring stations that use a
“big-endian” architecture without software byte swapping.) To make it possible
for both the Vax and the local station to use 4-character ascii names, the bytes of
the destination task name field of an acnet header are swapped upon reception
by the ANet Task in the local station. ANet then searches for a match with the
current connected task entries in the NETCT net connection table to dispatch the
received message to the proper message queue. When a message is transmitted
by the local station, these bytes are swapped before it gets passed to the chipset
so that the Vax receives them in natural order.

As a result of this logic of preserving 4-char ascii task name communication, the
6-character RAD–50 names must be kept in byte-swapped form in the NETCT

table. Since these names are treated as magic constants by local station software,
this is easy to do. As an example, the task name ACNAUX in RAD–50 form is
$06C609A0 (ACN=06C6, AUX=09A0); but for local station software, it should be
specified as $C606A009, and it appears this way in the NETCT table entry.

Since there can be a mix of 4-character and 6-character formats, it requires some
special logic to convert the names to ascii for display. All 4-character task names
are composed of 4 capital letters in ascii. If a given task name fits this pattern,
then it may be presumed a 4-character form; otherwise, it should be assumed to
be of the 6-character RAD–50 form.

RAD–50 definition
This encoding of a restricted set of characters permits squeezing 3 characters

of information into one 16-bit word. It can be considered simply as a base-40
number system, whose coding scheme is as follows:

0 space 28 .
1–26 A–Z 29 (unused)
27 $ 30–39 0–9

To convert ‘XYZ’ into RAD–50, the result is (25*40 + 26)*40 + 27 = 41067 = $A06B.
GTTRIO function 8

Returns token ring chipset I/O error statistics. The token ring chipset main
tains an error log that is a set of nine 8-bit counters. A special command can be
issued to the chipset to interrogate these counters. An extra motivation for doing
so is provided by the fact that for some error conditions, when the error count
reaches 255, or $FF, the chipset removes itself from the network. This means that
a node on token ring should plan to read this error log on some periodic basis.
The local station software does this, using a default period of about 20 minutes,

ACNAUX Functions Mar 6, 1992 page 3

currently. The counts are accumulated into a corresponding set of 16-bit counts,
which allow monitoring the health of the network. This GTTRIO function returns
the value of these word counts, along with the time interval over which they
were accumulated. The names of the error conditions are:

Line
Each frame that is received or repeated for a valid FCS or Manchester

code violation. If one is detected, the EDI (Error Detected Indicator) bit is
set to “1” in the frame or token’s ending delimiter. If the received EDI is
“1”, this Line error count is incremented; if the EDI is a “1”, it is not
incremented.

ARI/FCI

This indicates that the up-stream node chipset is unable to set its
ARI/FCI bits in a frame it has received. (The details of this seem rather
obscure to this writer.)
Burst

The chipset has detected the absence of transitions for five half-bit
times between SDEL and EDEL.
Receive congestion

The chipset recognizes a frame addressed to its specific address, but it
has no buffer space available to receive the frame.
Lost frame

When in transmit mode, the chipset fails to receive the end of the
frame it has transmitted.
Frame copied

When in receive/repeat mode, the chipset recognizes a frame that is
addressed to its specific address, but the ARI bits are nonzero, indicating a
possible duplicate address. (The bridge currently causes many of these.)
Token

The Active Monitor detects a frame with the MONITOR COUNT bit set,
no token of frame received within a 10 msec window, or a code violation
in a starting delimiter/token sequence.
DMA parity or DMA Bus

Maybe something wrong with the token ring interface board itself.

GTPKTS function 9
Returns network message packet processing statistics to permit assessment of

a node’s network I/O activity. The time since the network statistics were cleared
is given along with a count of message packets processed either in or out. For the
local station, several resident diagnostic counters are monitored to collect these
statistics. The time period is the time since the AAUX local application was last
initialized, which would normally be at system reset time; however, if AAUX is
updated to a new version, upon download of a new version, the old version is
terminated and the new version is initialized, so the statistics will begin again.
The implementation uses the cycle counter which is a longword that begins at

ACNAUX Functions Mar 6, 1992 page 4

zero at system reset time and is incremented for every 15 Hz cycle. If a station is
running at the backup 12.5 Hz rate, this value is not corrected for it. When AAUX

is initialized, it captures the present reading of this cycle counter. To reply to a
GTPKTS function request, the current cycle counter – the earlier one is returned.

The count of packets processed is fairly involved. The local station supports
network communications with several protocols. The Classic data request/alarm
pro to col does not use an acnet header. The DZero and Accelerator protocols do
use an acnet header. Each family of protocols must be considered separately.

The Classic protocol uses SAP 18. At present, there is no message counter
accumulated for the Classic protocol messages received, so a frame counter is
monitored as an approximation. In the SAP table, a word counter is incremented
for each SAP 18 frame received. AAUX watches this counter every cycle and
notices changes in it to build a count of Classic frames received. When a message
count is added to the system logic, this code can be updated to use it.

All Acnet-header protocols use SAP 68. Each task name that is connected to the
network is recorded in the NETCT table, and a word counter is incremented for
each message that is received and dispatched by the ANet Task. So AAUX

monitors these counters for all 23 possible entries in NETCT. For each entry that is
active (queue id <> 0) the associated word counter is monitored every cycle for
evidence of counting. Increments are accumulated into the total packet count.

All messages transmitted pass through the OUTPQ network output pointer queue.
There is a word in the OUTPQ header that is incremented for every message that
has been completely transmitted. This word is monitored every cycle and any
increments noticed are accumulated into the total packet count.

All in all, the total packet count is the sum of the number of Classic frames
received (to be replaced by a message count when available), the number of
messages passed to the associated message queue for each connected network
task name, and the number of messages completely transmitted to the network
for any protocol.

Each Linac local station uses Arcnet communications for data acquisition with
the SRMs (Smart Rack Monitors), which usually number 4 or 5 on each Arcnet.
This communication protocol is Acnet-header based and is called locally “#4” to
signify it was the 4th data request protocol to be supported by the local station
system software. This network activity is not part of the token ring network
activity; therefore, even though it represents network processing activity in the
local station, it was not included in the #packets reported in reply to GTPKTS. If it
were, it would typically add 75 packets per second for a station with 4 SRMs. This
includes 1 broadcast transmitted request and 4 replies per 15 Hz cycle.

ACNAUX Functions Mar 6, 1992 page 5

Viewing the results of these functions
One program that makes use of the GTPKTS function are Vax console page

D31, which polls a large sequence of nodes and reports the total time value and
the number of network packets processed per second between polls. Any node
that does not support the GTPKTS function is sent a NOOP function instead, in
which case only an indication of the success of the reply is reported.

Another program that exercises this function is called PACKETS, accessible from a
VT100 terminal or emulator. It shows the network activity relating to 4 nodes,
with the last one initially set to ADCALC. This last one can be changed to a user
selected node name by typing “!” to get the prompt message that asks for the
node name, such as LIN611, for example. When a user-selected name is entered,
the GTTASK function is issued to request the task list, displayed in a separate box.
Each node is polled approximately every 4 seconds, and statistics are displayed
for the current packet rate, the minimum and maximum rates, and rates that are
averaged over several different time intervals.

The program that uses the GTTRIO function to list the error counters at a VT100

terminal is called TRIO. It prompts for a node name and shows the current
counts obtained via the GTTRIO function and also the time over which the
counts were accumulated. At this time, the CLEAR and NOW and set new
period are not implemented, but they could be so in the future if needed.

